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Stochastic resonance in a bistable system subject to multiplicative and additive noise
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1Department of Physics, Central China Normal University, Wuhan 430079, China
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The stochastic resonance~SR! phenomenon in a bistable system under the simultaneous action of multipli-
cative and additive noise and periodic signal is studied by using the theory of signal-to-noise ratio~SNR! in the
adiabatic limit. Two cases have been considered: the case of no correlations between multiplicative and
additive noise and the case of correlations between two noises. The expressions of the SNR for both cases are
obtained. The effects of intensity of multiplicative and additive noise and the intensity of the correlations
between noises on the SNR are discussed for both cases, respectively. It is found that the existence of a
maximum in the SNR is the identifying characteristic of the SR phenomenon. In the case of no correlations
between multiplicative and additive noise, the SNR is independent of the initial condition of the system.
However, the SNR is not only dependent on the intensity of correlations between noises, but also on the initial
condition of the system in the presence of correlations between two noises.

PACS number~s!: 05.40.2a
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I. INTRODUCTION

Since Benziet al. @1# and Nicoliset al. @2# discovered a
phenomenon that they termedstochastic resonance~SR!, a
wealth of theoretical and experimental papers has follow
extending the notion of SR and discovering new applicati
~for extensive reviews see@3–5# and for a collection of pa-
pers see@6,7#!. Now the SR paradigm has drawn conside
able attention in such diverse fields as climatology, chem
try, laser physics, neuroscience~including single-neuron and
many-neuron models!, biophysics and physiology, particl
accelerators, solid-state physics~including superconducting
quantum interference devices, bistable magnetic syste
electron paramagnetic resonance, ferroelectrics, ferromag
ics, fluorescence, Ising systems, Josephson junctions,!,
and even sociology.

There have been many theoretical developments of S
conventional bistable systems@8–19#. In order to describe
SR, McNamara, Wiesenfeld, and Roy@8,9# introduced the
signal-to-noise ratio~SNR! to quantify SR, a quantity used i
engineering to describe the quality of a signal within a no
background. While both quantities, the response amplit
and the SNR, undergo a resonancelike curve as a functio
the noise level, the maxima are located at different value
the noise intensity. Other measures of SR, based on
residence-time distribution of a bistable, periodically driv
system, had been introduced to characterize SR. Zhou, M
and Jung@14# studied the heights of peaks in the residen
time distribution at odd multiples of the half-period of th
driving. They go through maxima as a function of the noi
Gammaitoni, Marchesoni, and Santucci@20# introduced the
area under the peak of the residence-time distribution at
half-period of the driving as a measure for SR. They show
that this area goes through a maximum as a function of
noise or the driving frequency and concluded that SR i
bona fide resonance. So far, the majority of the theoret
studies in this area have focused on nonlinear systems
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additive white noise. It was concluded that nonlinearity is
essential ingredient of SR since in a linear system the in
additive white noise leads to only a trivial decrease in
output SNR.

Recently, it has been shown@21–24# that ‘‘stochastic
resonance’’ also can be found in a linear system subjec
multiplicative rather than to additive noise. Note that t
term ‘‘stochastic resonance’’ here has been applied to
nonmonotonic behavior of the output signal amplitude rat
than to the usually considered SNR mentioned above
turned out that ‘‘stochastic resonance’’ takes place only
multiplicative colored noise~e.g., the dichotomous noise o
the O-U noise!, but disappears for white noise. Noise mul
plicativity and time correlation are the necessary conditio
for the ‘‘stochastic resonance’’ to occur in a linear system

The largest amount of work regarding fluctuations h
been on the consideration of systems with just one no
source. However, many physical systems require conside
various noise sources. Moreover, in certain situations no
may be correlated with each other@25–34#. More recently,
considered to be the quadratic-in-field SNR, SR in a lin
system subject to multiplicative noise and additive noise
been studied in Ref.@35#. It was shown that, in the linea
system, SR is absent for Gaussian white noise, but when
multiplicative noise has the form of an asymmetric dicho
mous noise, the SNR becomes a nonmonotonic function
the correlation time and the asymmetry of noise, and
SNR strongly depends on the strength of the cross corr
tions between multiplicative noise and additive noise. Ho
ever, it is well known that more realistic models of physic
systems are nonlinear. Therefore, it is very important
study the effects of correlations between multiplicative a
additive noise on the SR phenomenon of the nonlinear s
tems. The nonlinear systems with correlations between m
tiplicative and additive noise have attracted extensive inv
tigations @25–34#. Some of these investigations we
concerned with the steady-state statistical properties of n
linear systems; others were concerned with the trans
problems of nonlinear systems.

In this paper, we will use the theory of SNR proposed
1869 ©2000 The American Physical Society
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McNamara and Wiesenfeld@9# to study the SR phenomeno
in conventional bistable systems under the simultaneous
tion of a multiplicative noise and an additive noise and
periodic signal. According to the theory of Ref.@9#, the
bistable case is reduced to a two-state system, characte
by the occupation probabilitiesn65prob(x5x6) of both
stable statesx6 . The master equation for these occupati
probabilities is

ṅ152ṅ25W2~ t !n22W1~ t !n1

5W2~ t !2@W2~ t !1W1~ t !#n1 , ~1!

where W6 is the transition rate out of stable statesx6

56c. The general solution of Eq.~1! is

n1~ t !5g21~ t !Fn1~ t0!g~ t0!1E
t0

t

W2~ t8!g~ t8!dt8G , ~2!

whereg(t)5exp$* t0
t @W1(t8)1W2(t8)#dt8%. It is assumed

that the transition rateW6 is of the form

W6~ t !5 f ~a6b cosVt !. ~3!

Note thatW6(t) is time periodic due to the periodic signa
The transition rate can be expanded in the small param
b̄5b cosVt:

W65
1

2
~W07W1b cosVt1W2b2cos2Vt7••• !, ~4!

where

1

2
W05 f ~a!,

1

2
Wn5

~21!n

n!

dnf ~a!

db̄n
, ~5!

where f (a) is essentially given by the inverse of the Kram
ers time. It should be pointed out that the Kramers time
independent of the initial conditionx(t50) in the symmetric
bistable system driven by an additive white noise@9#. The
power spectrum of the system is given by

S~v!5S1~v!1S2~v!

5
pc2W1

2b2

2~W0
21V2!

d~v2V!1F12
W1

2b2

2~W0
21V2!

G 2c2W0

W0
21v2

,

~6!

which contains two parts:S1(v) is the signal output which is
a d function at the signal frequency, andS2(v) is the broad-
band noise output which is a Lorentzian bump centered
V50. Then, the SNR is defined by

VSNR5
Ps

S2~v5V!
, Ps5E

0

`

S1~v!dv. ~7!

To obtain the expression of SNR in terms of the output s
nal power spectrum, the key problem is to calculate the tr
c-

ed

ter

s

at

-
n-

sition rate. It is stressed that the expression for the transi
rate would be valid only in theadiabatic limit, so the theory
of SNR proposed by McNamara and Wiesenfeld@9# is also
called the adiabatic approximation. In order to keep our
sults valid, throughout this paper we will also restrict ou
selves in the case of theadiabatic limit. The purpose of this
paper is twofold. First of all, in Sec. II we will study SR in
conventional bistable system under the simultaneous ac
of multiplicative and additive noise, and periodic forcing.
this section, the multiplicative noise is independent of t
additive noise~i.e., there is no correlation between the tw
noises!. The effects of varying intensity of the multiplicativ
noise or the additive noise on the SNR will be studied,
spectively. Our second goal is to study the effects of cor
lations between multiplicative and additive noise on the
in the bistable system in Sec. III. We end with conclusions
Sec. IV.

II. BISTABLE SYSTEM WITH NO CORRELATIONS
BETWEEN MULTIPLICATIVE AND ADDITIVE NOISE

We consider the overdamped motion of a Brownian p
ticle in a symmetric bistable potential under the simultane
action of multiplicative and additive noise and periodic s
nal ~or periodic forcing!. The dimensionless form of the
Langevin equation for this model reads

ẋ5ax2bx31xj~ t !1A cosVt1h~ t !, ~8!

with

^j~ t !&50, ^j~ t !j~s!&52Dd~ t2s!, ~9!

^h~ t !&50, ^h~ t !h~s!&52ed~ t2s!, ~10!

whereD and e describe the intensity of multiplicative an
additive noise, respectively,A is the amplitude, andV is the
frequency of the periodic signal. The deterministic poten
of the bistable system

U0~x!52
a

2
x21

b

4
x4 ~11!

has two stable statesx252Aa/b, x15Aa/b, and an un-
stable statexu50. Here we assume that there is no corre
tion between multiplicative and additive noise:

^j~ t !h~s!&5^h~ t !j~s!&50. ~12!

The Fokker-Planck equation corresponding to the Lange
equation~8! with Eqs.~9!, ~10!, and~12! can be written as

]P~x,t !

]t
52

]

]x
@ax2bx31A cosVt1Dx#P~x,t !

1
]2

]x2
@Dx21e#P~x,t !. ~13!
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In the absence of a periodic signal (A50), it is well
known that the particle will spend most of its time nearx6 ,
and its steady-state distribution functionPs(x) is

Ps~x!5NuDx21eu21/2expF2
Û~x!

D
G , ~14!

with the modified potentialÛ(x),

Û~x!5
b

2
x22S a

2
1

be

2D D lnuDx21eu. ~15!

One can easily show that the extrema ofÛ(x) coincide with
those of the deterministic potentialU0(x). On the other
hand, under the action of noises, the particle will make
casional transitions over the barrier in the center. In orde
calculate the transition ratesW6 out of thex6 states, we can
first calculate the mean first passage time~MFPT! t6 of the
processx(t) to reach the statex7 with initial condition x(t
50)5x6 , which is given by the Kramers time@36#

t652puU09~x6!U09~xu!u21/2expF Û~xu!2Û~x6!

D
G .

~16!

Note that the above result is valid only when the intensity
two types of noises, measured byD ande, is small in com-
parison with the energy barrier heightDÛ5uÛ(xu)
2Û(x6)u, that ise,D!1. Thus

W65t6
215

a

A2p
expH 2

1

D F2
a

2
1S a

2
1

be

2D D lnUaD

be
11UG J ,

~17!

where W6 is the transition rate out of thex6 state. It is
shown that the transition rateW2 is equal to the transition
rate W1 when the systemic parameters (a and b) and the
intensities of noises (D ande) are given, which means tha
the transition rateW6 is independent of the initial condition
x(t50) of the system in the case of no correlations betw

FIG. 1. SNR for the case of no correlations between multipli
tive and additive noise, as a function of the multiplicative no
intensity D, for different values of the additive noise intensitye
with A50.08 andV50.001.
-
to

f

n

multiplicative and additive noise. In other words, the syst
‘‘forgets’’ its initial position, which is just like that in the
bistable system driven by only one additive white noise@9#.

In the presence of the periodic signalA cosVt, the poten-
tial of the system is modulated by the periodic signal. Ho
ever, here we assume that the signal amplitude is sm
enough~i.e., A!1) that, in the absence of any noise, it
insufficient to force a particle to move from one well to th
other, and it can be considered thatx656Aa/b andxu50
are still the stable states and unstable state of the system
the other hand, we also assume that the variation of the
riodic signal is slow enough~i.e.,V!1 or the adiabatic limit
@9#! that there is enough time to make the system reach lo
equilibrium in the period of 1/V. Therefore, the quasi
steady-state distribution functionPs(x,t) corresponding to
Eq. ~13! can be written as

Ps~x,t !5NuDx21eu21/2expF2
f~x,t !

D G , ~18!

with

f~x,t !5
b

2
x22S a

2
1

eb

2D D lnuDx21eu

2AAD

e
arctan~AD/e x!cosVt. ~19!

The modified MFPT is given by

t652puU09~x6!U09~xu!u21/2expFf~xu ,t !2f~x6 ,t !

D G ,
~20!

and the transition rate is

W65
a

A2p
expH 2

1

D F2
a

2
1S a

2
1

be

2D D lnUaD

be
11U

6AAD

e
arctan~AaD/be!cosVtG J . ~21!

- FIG. 2. SNR for the case of no correlations between multipli
tive and additive noise, as a function of the multiplicative no
intensity D, for different values of the amplitude of the period
signalA with e50.05 andV50.001.
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Within the framework of the theory of SR presented by M
Namara and Wiesenfeld@9#, the SNR takes the standard for
for the bistable system with independent noises in terms
the output signal power spectrum,

VSNR5
pA2W0

4eD S arctanAaD

be D 2

3F12
W0

2A2@arctan~AaD/be!#2

2eD~W0
21V2!

G21

, ~22!

where

W05
A2a

p
expH 2

1

D F2
a

2
1S a

2
1

be

2D D lnUaD

be
11UG J .

~23!

By virtue of the expression Eq.~22! of SNR, the effects of
the multiplicative and additive noise on the SNR can be d
cussed by numerical computation. For simplicity, we ta
a5b51 in our computation. In Figs. 1–3 we present t
signal-to-noise ratio as a function of the multiplicative no
intensity D, for different values of the additive noise inten
sity e, the amplitudeA, and the frequencyV of the periodic
signal, respectively. The existence of a maximum in th
curves is the identifying characteristic of the SR pheno
enon. It is shown that the peak is decreased as the add
noise intensity is increased. When the additive noise int
sity e is fixed, the maximum of the signal-to-noise ratio
increased as the amplitude of the input signal is increa
but decreased as the frequency of the input signal is
creased.

In Figs. 4–6 we present the signal-to-noise ratio as a fu
tion of the additive noise intensitye, for different values of
the multiplicative noise intensityD and the amplitudeA and
the frequencyV of the input signal, respectively. It is show
that the peak of the SNR is increased as the multiplica
noise intensity is increased. When the multiplicative no
intensityD is fixed, as shown in Fig. 5, the interesting poi
here is that there is only one peak~the first peak! for a small
value of the amplitude of the input signal~e.g., the case o

FIG. 3. SNR for the case of no correlations between multipli
tive and additive noise, as a function of the multiplicative no
intensity D, for different values of the frequency of the period
signalV with A50.085 ande50.05.
-
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A50.05) at a value ofe, and the peak is broad and low
However, when the value of the amplitude of the input sig
is increased, a second peak appears at a smaller valuee
~e.g., the case ofA50.055). As the value of the amplitude o
input signal continues increasing, the second peak rap
becomes high and narrow~e.g., the case ofA50.06), and the
first peak will disappear whenA is larger. A similar phenom-
enon has been shown in Ref.@9#, where this phenomenon
appears for sufficiently low frequency of the input signal, b
for the increasing amplitude of the input signal here. Fro
Fig. 6, we can see that the effect of frequency of the in
signal on the signal-to-noise ratio is so little that there
almost no variation for different values ofV.

III. BISTABLE SYSTEM WITH CORRELATIONS
BETWEEN MULTIPLICATIVE AND ADDITIVE NOISE

In this section, consider the bistable system Eq.~8! with
correlations between multiplicative and additive noise, a
the correlation form between two noises is assumed as
lows @26–31#:

^j~ t !h~s!&5^h~ t !j~s!&52lAeDd~ t2s!, ulu<1,
~24!

wherel is the cross-correlation intensity. The Fokker-Plan
equation corresponding to Eq.~8! with Eqs. ~9!, ~10!, and
~24! can be written as

]P~x,t !

]t
52

]

]x
@ax2bx31A cosVt1Dx1lAeD#P~x,t !

1
]2

]x2
@Dx212lAeD x1e#P~x,t !. ~25!

In the absence of a periodic signal (A50), the steady-
state distribution functionPs(x) of Eq. ~25! is

Ps~x!5NuDx212lAeD x1eu21/2expF2
Û~x,l!

D
G
~26!

-
FIG. 4. SNR for the case of no correlations between multipli

tive and additive noise, as a function of the additive noise inten
e, for different values of the multiplicative noise intensityD with
A50.01 andV50.001.
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with the modified potentialÛ(x,l),

Û~x,l!5
b

2
x222blA e

D
x2S a

2
2

be~4l221!

2D D
3 lnuDx212lAeD x1eu1

l

A12l2

3Fa1
be~324l2!

D GarctanS AD/e x1l

A12l2 D
~27!

for ulu,1, and

Û~x,l561!5
b

2
x272bA e

D
x1S 3be

D
2aD

3 lnuAD x6Aeu6
~be/D2a!Ae

AD x6Ae
.

~28!

It can also be shown that the extrema of the modified po
tial Û(x,l) coincide with those of the deterministic potenti
U0(x). The MFPTt6 of the processx(t) to reach the state
x7 with initial condition x(t50)5x6 is also given by the
Kramers time@30#

t652puU09~x6!U09~xu!u21/2expF Û~xu ,l!2Û~x6 ,l!

D
G .

~29!

Note that the above result is valid only when the intensity
two types of noises, measured byD ande, is small in com-
parison with the energy barrier heightDÛ5uÛ(xu ,l)
2Û(x6 ,l)u. It provides the restriction on the noise intens
ties, which had been discussed in our previous paper@30#.
Then we can obtain the transition rateW„x(t50)5x6 ,l…
out of thex6 states:

W~x6 ,l!5
a

A2p
expH 2

1

D F2
a

2
62blAae

bD

2S b~4l221!e

2D
2

a

2D lnUaD

be
62lAaD

be
11U

2
l

A12l2 S a1
b~324l2!e

D D
3S arctan

l6AaD/~be!

A12l2
2arctan

l

A12l2D G J
~30!

for ulu,1,
n-

f

W~x6 ,71!5
a

A2p
expH 2

1

D F2
a

2
22bAae

bD

2S 3be

D
2aD lnUAaD

be
21U

1
be/D2a

12Abe/~aD!
G J ~31!

for l571, and

W~x6 ,61!5
a

A2p
expH 2

1

D F2
a

2
12bAae

bD

2S 3be

D
2aD lnUAaD

be
11U

1
be/D2a

11Abe/~aD!
G J ~32!

for l561.
It is very important that, when we assume the multiplic

tive noise and additive noise are correlated with each ot
the transition rate out of thex2 state is not equal to the
transition rate out of thex1 state when the systemic param
eters (a andb) and the parameters of noises (l, D, ande)
are given. The transition rate is now dependent on the in
conditionx(t50) of the system because of the correlatio
between multiplicative and additive noise. In other word
the correlations between two noises cause the system to
member’’ its initial position, which differs from that in the
no-correlations case~Sec. II! and that in the only additive
white noise case@9#. On the other hand, we find that th
transition rate out of thex2 state forl511 is equal to the
transition rate out of thex1 state forl521 @see Eq.~31!#,
and the transition rate out of thex1 state forl511 is equal
to the transition rate out of thex2 for l521 @see Eq.~32!#.

In the presence of a small periodic signal with very slo
frequency ~i.e., A,V!1), the potential of the system i
modulated by the periodic signal. However, we assume
the signal amplitude is small enough~i.e., A!1) that, in the
absence of any noise, it is insufficient to force a particle
move from one well to the other, and it can be conside
that x656Aa/b and xu50 are still the stable states an
unstable state of the system. Moreover, we also assume
the variation of the periodic signal is slow enough~i.e., V
!1 or the adiabatic limit@9#! that there is enough time to
make the system reach local equilibrium in the period
1/V. Then, the quasi-steady-state distribution functi
Ps(x,t) of the system can be written as

Ps~x,t !5NuDx212lAeD x1eu21/2expF2
f~x,l,t !

D G ,
~33!

with
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f~x,l,t !5
b

2
x222blA e

D
x1S be~4l221!

2D
2

a

2D lnuDx2

12lAeD x1eu1
l

A12l2 S a1
be~324l2!

D

2
A

l
AD

e
cosVt D arctanS AD/e x1l

A12l2 D ~34!

for ulu,1, and

f~x,l561,t !5
b

2
x272bA e

D
x

1S 3be

D
2aD lnuAD x6Aeu

1S be

D
2a6AD

e
A cosVt D

3
Ae

AD x6Ae
. ~35!

The modified MFPT is given by

FIG. 5. SNR for the case of no correlations between multipli
tive and additive noise, as a function of the additive noise inten
e, for different values of the amplitude of the periodic signalA with
D50.05 andV50.001. Note the second peak appears as the v
of A increasing.

FIG. 6. SNR for the case of no correlations between multipli
tive and additive noise, as a function of the additive noise inten
e, for different values of the frequency of the periodic signalV with
A50.01 andD50.05. Note that there is almost no distinction f
different values ofV.
t652puU09~x6!U09~xu!u21/2expFf~xu ,l,t !2f~x6 ,l,t !

D G .
~36!

Then we can obtain the transition rateW„x(t50)5x6 ,l…
out of thex6 states:

W~x6 ,l!5
a

A2p
expH 2

1

D F2
a

2
12blAae

bD

2S b~4l221!e

2D
2

a

2D lnUaD

be
12lAaD

be
11U

2
l

A12l2 S a1
b~324l2!e

D

2
A

l
AD

e
cosVt D S arctan

l1AaD/~be!

A12l2

2arctan
l

A12l2D G J ~37!

for ulu,1,

-
y

e

-
y

FIG. 7. SNR @Eq. ~40!# for the case of correlations betwee
multiplicative and additive noise, as a function of the multiplicati
noise intensityD, for different values of the correlated intensityl
with the initial condition x(t50)5x1 . A50.0002, V50.0001,
ande51.5D.

FIG. 8. SNR @Eq. ~40!# for the case of correlations betwee
multiplicative and additive noise, as a function of the correla
intensity l, for different values of the amplitude of the period
signal A with the initial condition x(t50)5x1 . D50.08, V
50.0001, ande50.16.
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W~x6 ,71!5
a

A2p
expH 2

1

D F2
a

2
22bAae

bD

2S 3be

D
2aD lnUAaD

be
21U

1
be/D2a2AD/e A cosVt

12Abe/~aD!
G J ~38!

for l571, and

W~x6 ,61!5
a

A2p
expH 2

1

D F2
a

2
12bAae

bD

2S 3be

D
2aD lnUAaD

be
11U

1
be/D2a1AD/e A cosVt

11Abe/~aD!
G J ~39!

for l561.
From Eqs.~37!–~39!, it can be seen that, in the case

correlations between multiplicative and additive noise,
transition rate is not only dependent on the intensities (e and
D) of noises and the cross-correlation intensityl of the cor-
relations between multiplicative noise and additive noise,
also on the initial conditionx(t50) of the system. Within
the framework of the theory of SR presented by McNam
and Wiesenfeld@9#, we can obtain the standard form of th
SNR for the bistable system with correlations between m
tiplicative noise and additive noise in terms of the outp
signal power spectrum in different cases.

~i! When ulu,1,
e

t

a

l-
t

VSNR~x6 ,l!5
pA2W0~x6 ,l!

4eD~12l2!

3S arctan
l6AaD/~be!

A12l2
2arctan

l

A12l2D 2

3F12
A2W0

2~x6 ,l!

2eD~12l2!@W0
2~x6 ,l!1V2#

3S arctan
l6AaD/~be!

A12l2

2arctan
l

A12l2D 2G21

, ~40!

where

W0~x6 ,l!5
A2a

p
expH 2

1

D F2
a

2
62blAae

bD

2S b~4l221!e

2D
2

a

2D lnUaD

be
62lAaD

be
11U

2
l

A12l2 S a1
b~324l2!e

D D
3S arctan

l6AaD/~be!

A12l2
2arctan

l

A12l2D G J .

~41!

~ii ! Whenl571 andx(t50)5x6 ,
VSNR~x6 ,71!5
pA2W0~x6 ,71!

4eD@12Abe/~aD!#2 F12
A2W0

2~x6 ,71!

2eD@12Abe/~aD!#2@W0
2~x6 ,71!1V2#

G21

, ~42!

where

W0~x6 ,71!5
A2a

p
expH 2

1

D F2
a

2
22bAae

bD
2S 3be

D
2aD lnUAaD

be
21U1 be/D2a

12Abe/~aD!
G J . ~43!

~iii ! Whenl561 andx(t50)5x6 ,

VSNR~x6 ,61!5
pA2W0~x6 ,61!

4eD@11Abe/~aD!#2 F12
A2W0

2~x6 ,61!

2eD@11Abe/~aD!#2@W0
2~x6 ,61!1V2#

G21

, ~44!

where

W0~x6 ,61!5
A2a

p
expH 2

1

D F2
a

2
12bAae

bD
2S 3be

D
2aD lnUAaD

be
11U1 be/D2a

11Abe/~aD!
G J . ~45!
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FIG. 9. Comparison of the SNR@Eq. ~40!# for
the initial conditionx(t50)5x1 ~the full line!
with that for x(t50)5x2 ~the dashed line!. A
50.0002,V50.0001, ande51.5D.
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By virtue of the expressions of SNR@Eqs.~40!, ~42!, and
~44!# for the different cases, the effects of the correlati
between multiplicative and additive noise on the SNR can
presented by the numerical computation. For simplicity,
takea5b51 in our calculations.

When ulu,1, the signal-to-noise ratio with the initia
condition x(t50)5x1 , as a function of the multiplicative
noise intensityD for different values of the correlated inten
sity l, is shown in Fig. 7. The maximum of the signal-t
noise ratio for the initial conditionx1 is increased as the
correlation intensityl varies from negative value to positiv
value. It can also be found that the maximum of the sign
to-noise ratio for the initial conditionx2 is decreased as th
correlation intensityl varies from negative to positive
When the intensities of two noises are given, the signal
noise ratio with the initial conditionx1 , as a function of the
correlation intensityl for different values of the amplitude
of the periodic signalA, is shown in Fig. 8. We can see th
the height of the peak increases with the increasing of
amplitude of the periodic signalA for both initial conditions.
The peak of the signal-to-noise ratio forx(t50)5x1 is situ-
ated inl,0. However, because of the symmetry, the pe
of the signal-to-noise ratio forx(t50)5x2 is situated inl
.0. In Fig. 9, we compare the SNR for the initial conditio
x1 with that for the initial conditionx2 . It can be seen tha
there is no distinction between the SNR for the initial co
dition x1 and that for the initial conditionx2 when the in-
tensity of the correlations between noises is zero, but
distinction of the SNR betweenx(t50)5x1 and x(t50)
5x2 is clearly whenlÞ0. Moreover, we also find that th
value of SNR withl520.5 forx(t50)5x1 is equal to that
with l510.5 forx(t50)5x2 . The above results show tha

FIG. 10. SNR@Eq. ~42!# for the case ofl521 andx(t50)
5x1 @or l51 andx(t50)5x2], as a function of the multiplica-
tive intensityD, for different values of the amplitude of the period
signalA. e50.08 andV50.0001.
e
e

l-

-

e

k

-

e

the signal-to-noise ratio is not only dependent on the int
sities (e andD) of noises and the cross-correlation intens
l of the correlations between multiplicative noise and ad
tive noise, but also on the initial conditionx(t50) of the
system.

When l521 and x(t50)5x1 @or l51 and x(t50)
5x2], the signal-to-noise ratio, as a function of the mul
plicative noise intensityD for different values of the ampli-
tude of the periodic signalA and for different values of the
additive noise intensitye, is shown in Fig. 10 and Fig. 11
respectively. The interesting point here is that the peak
narrow and high, and the value of the signal-to-noise ratio
very large in the order 104. Moreover, there is a large varia
tion in the value of the SNR peak over a very narrow ran
in A ~see Fig. 10! and ine ~see Fig. 11!. However, whenl
51 and x(t50)5x1 @or l521 and x(t50)5x2], the
signal-to-noise ratio, as a function of the multiplicative noi
intensityD for different values of the amplitude of the per
odic signalA and for different values of the additive nois
intensitye, is shown in Fig. 12 and Fig. 13, respectively. It
shown that the peak is broad and the value of the signa
noise ratio is very small in the order 1027.

IV. CONCLUSION

We have studied the SR phenomenon in conventio
bistable systems under the simultaneous action of multi
cative and additive noise and periodic forcing by using
theory of SNR proposed by McNamara and Wiesenfeld@9#.
Two cases have been considered: one is the case of no
relations between multiplicative and additive noise, and
other is the case of correlations between two noises. We h

FIG. 11. SNR@Eq. ~42!# for the case ofl521 andx(t50)
5x1 @or l51 andx(t50)5x2], as a function of the multiplica-
tive intensityD, for different values of the additive noise intensi
e. A50.0002 andV50.0001.
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obtained the expressions of the SNR for both cases. By
tue of the expressions of SNR and through the numer
computation, we have found that the existence of a ma
mum in the SNR is the identifying characteristic of the S
phenomenon. In the case of no correlations between m
plicative and additive noise, the SNR is independent of
initial condition x(t50) since the transition rateW6 is in-
dependent of the initial condition. However, the presence
correlations between two noises changes this picture.
correlations between noises cause the system to ‘‘rem
ber’’ its initial position, and the SNR is now dependent
the initial condition since the transition rates depend on
initial condition.

In the case of no correlations between two noises,
effects of varying intensity of the multiplicativeD and the
additive noisee on the signal-to-noise ratio have been stu
ied, respectively. It has been shown that the effects ofD and
e on the change of the signal-to noise ratio are oppose
each other. If the SNR is a function ofD, there is only one
maximum when the amplitude of the periodic signalA is
increased, and the value of the maximum in SNR decrea
when the frequency of the periodic signalV is increased.
However, if the SNR is a function ofe, a second maximum
in the SNR can appear when the amplitude of the perio

FIG. 12. SNR @Eq. ~44!# for the case ofl51 and x(t50)
5x1 @or l521 andx(t50)5x2], as a function of the multipli-
cative intensityD, for different values of the amplitude of the per
odic signalA. e50.08 andV50.0001.
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signal A is increased, and there is no variation for differe
values ofV.

In the case of correlations between two noises, the effe
of the intensityl of correlations between noises have be
studied for different cases. Whenulu,1, the stochastic reso
nance phenomenon can still appear when the intensityl of
the correlations between two noises is varied from nega
to positive, and the appearance of the maximum in the S
is dependent on the initial condition of the system. Whenl
521 and x(t50)5x1 @or l51 and x(t50)5x2], the
value of the SNR is very large. However, whenl51 and
x(t50)5x1 @or l521 andx(t50)5x2], the value of the
SNR is very small. In fact, whenl521 ~or l51), the
probability distribution of the Brownian particle is fully con
centrated atx(t50)5x1 @or x(t50)5x2]. On the contrary,
when l521 @or l51], the probability distribution of the
Brownian particle is very little atx(t50)5x2 ~or x(t50)
5x1).
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FIG. 13. SNR @Eq. ~44!# for the case ofl51 and x(t50)
5x1 @or l521 andx(t50)5x2], as a function of the multipli-
cative intensityD, for different values of the additive noise intensi
e. A50.0002 andV50.0001.
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